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The acceleration and the,, establishment of viscos and viscoelastic media between two parallel plates acted upon by an abruptly applied 
constant pressure gradient is investigated. The Shvedov-Bingham model is used for the viscoplastic medium and a solution is sought 
in the form of layered fl~¢ with a time-dependent thickness of the solid kernel. The problem is reduced to a one-dimensional heat- 
conduction equation fo:r a rod of variable length, where the expansion law is not known in advance and an additional non-linear 
boundary condition is used to determine it. Two versions of the approximate solution are given. The first is a general modified 
Slezkin-Targ method, by means of which the problem of the motion of the medium acted upon by the specified time-varying pressure 
gradient is reduced to solving an ordinary differential equation. The second is an asymptotic method of solving the problem for 
short and long values of the dimensionless time. The time dependences of the flow rate and the boundary of the solid kernel are 
constructed for various rations of the pressure drop to the shear stress limit. The time taken for the flow rate and the boundary of 
the solid kernel to bece,me established are determined as function of this ratio. © 2000 Elsevier Science Ltd. All rights reserved. 

The unsteady flows of a viscous fluid between two fixed parallel plates has been investigated fairly fully, 
due to the fact that: the problem can be reduced to the classical heat-conduction equation. Exact solutions 
have been obtained using the Fourier method [1--4] and written in the form of series. The approximate 
Slezkin-Targ method [5, 6] is also of interest. In this method the acceleration of the fluid is replaced by an 
average over the cross-section. The solution is simplified considerably but may contain a fairly large error. 

Problems of transient viscoplastie flows can be reduced to solving non-linear boundary-value problems, 
which give rise to, serious mathematical difficulties. Using the idea of the Slezkin-Targ method, an 
approximate solution of the problem of the slowing down of a viscoplastic medium has been presented 
in [7, 8]. A description of the different approaches in investigating unsteady viscoplastic flows is given 
in [9]. Exact solutions are usually constructed by the semi-inverse method in which the boundary 
conditions on the boundary of the solid kernal are chosen from the form of the corresponding analytic 
solution. As a result, solutions are obtained for boundary-value problems that are unnatural from the 
point of view of experiment. A wide class of multiparametric accurate solutions of the problem of the 
flow of a viscoplastic medium acted upon by a specified time-varying pressure gradient has been 
presented in recent papers [10, 11]. 

1. FORMULATION OF THE BOUNDARY-VALUE PROBLEM 

Consider the flow of a viscoplastic medium in the region 0 ~< ~, ~< 2h between two fixed parallel plates 
= 0, ~, = 2h. We will use the Shvedov-Bingham constitutive relation in the form 17 = Ixo33 / ~2 -4- 170, where 

17 - the shear strew; on the area ~, = const - exceeds 170 (the shear stress limit) in absolute value. In the region 
where 1171 ~ 170, the deformation rate is zero and, consequently, the velocity ~ is independent of the ~, 
coordinate. This region is called the rigid kernel. The medium is at rest at the initial instant t = 0. When 
t > 0 flow begins due to the action of a constant pressure gradient dp/d£, t > 0, directed along the i axis. 

The determination of the velocity field of the medium ~ (l, ~) reduces to solving the following 
boundary-value problem [10] 

0 ~  g~< go(i) p -~-  = Ix 0~ 2 Or' 

~(0,go)=0, "~(i,0)=0, a~_~ =O, 0 ~  Ix -2 = - ~  
~=~ ~=~o 
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In the region £, < £, < h the function ~ (?, ~,) is equal to the constant value ~ (?, 20), [ x(L 2,) I < %. 
In the region h < £, < 2h the functions a~ (?, 2,) are supplemented with respect to symmetry 
~(1, ~) = = ~ (r, 2h -~). 

We introduce the dimensionless quantifies 

u =  u, P = - h 0 p  z _Z-o t =  ph2i" (1.1) ~oa~' z=~, ,  z o -  T ,  

Then, to determine the dimensionless velocity a) (t, z) and the function Zo(t) from (1.1) and (1.2) we 
obtain the boundary-value problem 

bu a~ 
o t  = ~ + I, t ~> 0, 0 ~< z ~< zoCt) (1.2) 

! 
u(t,O)=O, v,(t ,  Zo)=0, u=(t, Zo)= (1.3) 

~ !  - zo )  

v(O, z) = O, zo(O) = 0 (1.4) 

2. T H E  S O L U T I O N  O F  T H E  P R O B L E M  F O R  A V I S C O U S  F L U I D  

The viscous-fluid approximation corresponds to the limit P ~ ~ .  Assuming Zo(t) = I in (1.2) - (1.4) 
and omitting the last conditions in (1.3) and (1.4), we obtain a linear boundary-value problem for the 
classical heat-conduction equation. 

Using the method of  separation of  variables [1-3] we can obtain the solution for the velocity field in 
the form of a Fourier series 

V(t'Z)=Z-IZ2 -_--'5"2 2,'--" s i n x ( n - ~ ) Z  , ~  ~^m-,,-2'-~--np'"~2"~,J 
n = i  ~n - -  7 2 /  

Hence, for the dimensionless flow rate we have the expression 

Q -  2 } u d z - 2 - ~  4 ~(n_~)-4e-,2(,-"2) 2t 
- -  ~ - -  3 ~ 4  nffil 

(2.1) 

Series (2.1) converges for all values of t. However, for small values of  t it is more convenient to use 
the identical series. 

Q= 2t- 3~t '~  + r(t), r(t)<-~g~ t~e -'/, 

4 ' t" 2 d r <  16 t3/2e_n2/t 
, x  3--4; n=l q ~  0 0 

(2.2) 

Series (2.2) can be derived using Poisson's formula [12] 

= xk~e~ x ! + (2.3) 
n 

as follows. We differentiate series (2.1) twice with respect to t, we assume gt = x on the right-hand side and we 
convert the sum using Poisson's formula (2.3) with a = -1/2. Returning to the initial argument t = x/g, we obtain 

4m k nffi, } 
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We assume t = 0 in series (2.1) for Q(t)  and its derivative Q'(t). Using the well-known values for the numerical 
series, we obtain Q(0) = 0 and Q'(0) = 2. Hence, integrating series (2.4) twice we obtain series (2.2). 

For sufficiently small t, series (2.2) converges much more rapidly than (2.1). The order of smallness 
of the residual term r(t) in (2.2) is higher than any degree of t. The function r(t) is non-analytic in the 
neighbourhood of J~ = 0 and is represented by a converging sign-variable series, the residual term in 
which is less than the first neglected term. The first term of the expansion in (2.2), linear in t, is 
easily obtained from the asymptotic solution (2.1). However, the second term of the expansion of t 3/2 
and, all the more, the last non-analytic terms, can only be obtained using special transformations (see 
Section 4). 

We will demonstrate the effectiveness of series (2.1) and (2.2) for calculating the flow rate Q(t). We will confine 
ourselves to two terms in the partial sums Q÷(t)  of series (2.1) and Q_(t) of series (2.2) 

Q+(t) = 2 1 3 - 0 , 6 5 7 e  -2"47t, Q..(t) = 2 t -  1,504t "~ 

which give upper and lower estimates, respectively, for Q(t). The flow rate can then be determined from the formula 

Q _ J2t - 1,504t "~, t <~ t o 
- [213-0,657e -2"47t. t > t o 

(2.5) 

In Fig. 1 we show the functions r+(t) = Q +(t) - Q(t)  ~ 0.00811e -22'~, r_(t) = Q(t) - Q_(t) ~ 3.01t3/2e -lIt which 
de~rmine the error.,; of the two-term partial sums (2.5). The greatest error of expression (2.5) arises at the point 
to 0.153 and is equal to r+(t) = r_(t) ~- 2.7 × 10 -4, while the relative error is less than 0.13%. 

3. T H E  S O L U T I O N  BY A V E R A G I N G  T H E  A C C E L E R A T I O N  

The Slezkin-Targ method was proposed in [5, 6] for calculating the flow of a viscous fluid and it was 
also used to solve the problem of the impact of a viscoplastic rod [7, 8]. 

Below we describe a modification of the Slezkin-Targ method, which differs from the traditional 
method in that a .general ordinary differential equation for the flow rate will be obtained. The time 
dependence of the flow rate can be determined without a detailed calculation of the velocity field, and 
this can be sufficient to solve a number of practical problems. 

We will first illustrate the method and its effectiveness by solving problem (1.4) - (1.6) for a viscous 
fluid. The acceleration is replaced by an average over the cross-section; hence 

J 

0 

'I 
0. 0.? O,J t g~ 

Fig. 1. 
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~v i dQ 
O---t-= 2 dt (3.1) 

Then 

l d Q  1 2 

Integrating, we obtain the required equation for the flow rate 

Q(t) = Sv (z)dz = 1 - 
o 2 d t )  

which has the following solution, satisfying the condition Q(0) = 0 

Q(t) = 2 (! - e -3') (3.2) 

The principal asymptotic form for 2t when t ~ 1 is the same as the exact solution, and when 
t > 1 the coefficient of the exponential asymptotic form differs from the exact one by 1.5%. The 
largest difference between solutions (3.2) and (2.1) is 0.044 when t = to, which is 13.5% of the exact 
value. 

We will now solve boundary-value problem (1.2) - (1.4) by the Slezkin-Targ method for a viscoplastic 
medium. We replace the acceleration in (1.2) by the average (3.1). The solution of Eq.(1.2), which satisfies 
the first two conditions (1.3), then takes the form 

1 v : (, -'  2)2 (3.3) 

Substituting (3.3) into the third boundary condition (1.3), we obtain the first equation for the 
functions Zo(t) and Q(t) 

i dQ 1 (3.4) 
1 2 dt  = P ( 1 - Z o )  

Integrating (3.3) with respect to z, we obtain the second equation for zo(t) and Q(t) 

(, ldaV2 ½ ) 
Q= 2 [ udz + 2 ( l -  zo)v(z .o)=i '- '~-~' t  J~Zo - d 

o 
(3.5) 

It is more convenient to write the system of equations (3.4), (3.5) in the form of a differential equation 
for the variable II(z0) = 1/(1 - z0) 

1 / ! ~ dl-I + l-I = P, H(0)=1  
I - - ~ )  dt (3.6) 

3 \  

the solution of which has the form 

i ) P - I  i I - H  2 I - H  
3t = 1--~-g- In p----~ p3 InI ' l+2--p"~+ p- ~ (3.7) 

The flow rate can be expressed algebraically in terms of the function H(t) 

(211 + I)(FI - I) 2 
Q = 3H2p (3.8) 



The flow of viscous and viscoplastic media between two parallel plates 127 

It follows from (3.6) and (3.8) that as t ~ oo 

H o P ,  Q ~ Q** = 
(2P+  I ) (P-  1) -~ 

3p 3 (3.9) 

We will now obtain the asymptotic expansion of the exact solution of boundary-value problem (1.2) - 
(1.4) when t ~ 1 and we will compare it with the approximate solution (3.7), (3.8). 

4. T H E  A S Y M P T O T I C  S O L U T I O N  F O R  S H O R T  T I M E S  

We will seek the solution in the form of the following expansion 

u = t F ( ~ ) +  t ~ F l ( ~ ) +  . . . .  Zo = 2,~(A + B ,~  +...),  ~ = z/(2"~) (4.1) 

Hence, we obtain values of the function v and its derivatives with respect  to t and z, substituting which 
into Eq.(1.2) and boundary conditions (1.3), we obtain the following boundary-value problems for 
determining the fu:actions F(~), Fa(~) and the constants A and B 

F"(~) + 2~F'(~) - 4F(~) + 4 = 0 

F(O)=O, F'(A)=O, F"(A)=-..41P 

F('(~) + 2~/~((~} - 6 6 (~) = 0 

F~(0)=0, F((A)-4B/ P=O, F('(A)+8BAI P=-8AI P 

(the last condition:~ are simplified using the relations F"(A) = --4, F"(A) = 8A). 
Equation (4.2) h, as the general solution 

F(~) = clY 1 (~) + c2Y 2 (~) + ! 

Yl (~) = 2~ 2 + 1, Y2 (~) = (~2 + I~).q(-~ elf ~ + ~ exp(-~ z) 

2 ~ 2 

where Yl(~) and Y2(~) - are independent solutions of homogeneous equation (4.2) 
For the constants Cl, c2 and A w e  obtain from (4.3) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

c I = -1, c 2 = 2A exp(A 2) I P(A) (4.8) 

P(A) = 1 + "f~A exp(A 2) erf A = 

~1 +o~1 A2 + ~2A4 +o~3A 6 +...+lXnA 2n +.. .  (4.9) 

= l.~-'~Ae A2 + (5 IA 2)-| _ (a2A4)-I ... + (_l)n (txnA2n)-I +...  

( cx ,=2" / (2n-1) ! ! ,  a l = 2 ,  ~2=4~  .... ) 

The last expression in (4.8) is a parametrization of the dimensionless number P(A) ,  which occurs in 
boundary-value p:roblem (1.2) - (1.4). The first series of (4.9) converges for any A, while the second 
series, which is asymptotic to it, is convenient to use for calculating the function P(A)  for large A. The 
residual term for the second series does not exceed the first neglected tenn. 

We can similar!ly obtain the solution of problem (4.4), (4.5). Equation (4.4) has two independent 
solutions 

Y; = 2~ 3 +3~, Y2(~) = YJ(~) ( '~ /2 )e r f~+(~  2 + 1)exp(~ 2) (4.10) 

The family of solutions FI(~) = C(2~ 3 + 3~) satisfies the first condition of (4.5). Substituting this 
expression into the second two conditions of (4.5) we obtain a system for determining the constants B 
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and C. Finally, using relations (4.6) - (4.8) we obtain F({), and from the system mentioned we obtain 
the constants B and C and the function FI({) 

F({) = -2{ 2 + 2(A / P(A)) exp(A 2 )(({2 + ~)~r~ erf ~ + { exp(-~ 2 )) 

4(292 + 3)9 
Ft({)= 3P(2A 2 +3) 

(4.11) 

The constant A is obtained from the equation P(A) = P and the function P(A) is defined by 
series (4.9). 

The velocity is found from expansion (4.1). In particular, the velocity of the solid kernel 

u (t, Zo) = tF(A)+ t N -¢ttF~ (A)+ . . . .  t(! -1  / P ) -  t ~ 4A/(3p) +... (4.12) 

The flow rate in the solid kernel is equal to the product of the velocity (4.12) and the width of the kernel 
2(1 -z0). The flow rate outside the kernel is given by the integral 

zo tN(4A_ 8_~A exp(Ai)_ 4~A I 2 ~ u (t, z)dz = 4t ~ ~ F(x)dx = 
0 0 51" M"] 

(4.13) 

The integral in (4.13) is calculated using the equation 

A 

-F'(O) + 2AF(A)- 6~ F(~)d~ + 4A = 0 
0 

F(A)=I-I IP,  F'(A)=0, F'(O)=4Aexp(A2)IP 

(4.14) 

which is obtained by integrating Eq.(4.2) with respect to ~ in the limits from 0 to A. 
For the total flow rate at the initial stage t ,~ 1 we have 

Q_ =2t{l--~)-t~pexp(A2)+... (4.15) 

5. THE A S Y M P T O T I C  S O L U T I O N  FOR LONG TIMES 

We will seek the solution of boundary-value problem (1.2) - (1.4) in the form 

u = v , ( z ) -  •(z)exp(-et2t), z0 = z** -[~exp(--~2t) (5.1) 

u. , ( z )=z . , z -~z  2, z * * = l - l / P  (5.2) 

where t).(z), z~ - are the velocity and the boundary of the solid kernel of the steady flow respectively 
as t ---~ oo. 

We substitute expressions (5.1) into (1.2) and (1.3) and we take into account only terms linear in E and 
13. We then obtain the boundary-value problem for determining the function E(t) and the constant 13 

e"(z) + ot2e(z) = 0 (5.3) 

e(o) = 0, e'(z..) = 13, e"(z..)  = - l a p  (5.4) 

To determine the function e(z) we must eliminate 13 from (5.4), after which the solution of the boundary- 
value problem can be represented in the form of a linear combination of the eigenfunctions 
en sin(t~nZ). The eigenvalues t~ n are found from the algebraic equation 

a. ( p - I  
! (5.5) 

The following expansions hold for the smallest positive root tXo of Eq.(5.5) 
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(gO = 

P(P-I)-Y2(I-6 (P-I)+-~ (P-I)2 ), P~ 2 

2 3~,2P) ~,5 3 P ] k 2 e ) '  P > 2  

(5.6) 

the relative error of  which is less than 1%. 
Each successive root o~ n exceeds the previous root tx,,_ 1 by more than rd~/(P - 1) and lies in the range 

~,nP/(P - 1) < an < (~2  + nn)P/(P - 1). The smallest eigenvalue (z = tx0 defines the asymptotically 
principal terms in (5.1). Using (5.2) and (5.4) for these we obtain 

t~(Z) = e o sintXoZ, [$ = I((Z..) = eOCt 0 c o s [ ( P -  l)ot 0 / P] 

We determine the flow rate 
zo 

Q = 2(l - zo)u (t, Zo) + 2 l u dz 
0 

(5.7) 

Substituting expressions (5.1) and (5.7) here and taking into account terms that are linear in e and 
13, we obtain the following expansion for the flow rate at the relaxation stage (t ~, 1) 

Q+ = Q.(p)_ k(P)exp(..aXo2t), Q.(p) = (2P+ I)(P- I) z (5.8) 
3p 3 

_ XtXo 2 Z,P 
fl--~, eo = 4sin[(P_i)c~o/ p] (5.9) 

where Q ,  is the limit value of the flow rate as t ---> 0o (see (3.9)). 

6. C O M B I N E D  E X P A N S I O N  

The number ~.(P) is found from the condition for smooth matching of  the functions Q+(5.8) and 
Q_(4.14) at the point to 

~(to) = Q_fto), ~(to) = ~(to) 

We initially eliminate ~, from (6.1) 

(6.1) 

2 + , 2 • 
OtoQ+ (to) Q~(to)=OtoQ_(to)+Qf_(to) (6.2) 

Substituting (5.8) and (4.14) into (6.2), we obtain the equation 

t ~  - p t  0 + q t ~  = r (6.3) 

in whichp, q and r are functions of the parameter P. After calculating to(P) we can find ~. from (6.1) 

X = exigao2to)(Q. - Q_ (t o)) (6.4) 

The quantity to defines the limit of the action of  the two asymptotic forms Q+(t) and Q_(t). The  error 
in determining it has only a minor effect on the value of  ~. in (6.4). Hence, it is sufficient to confine 
ourselves to a simple interpolation for the function to(P). When P -> 1 the asymptotic forms Q+(t) and 
Q_(t) convert to the asymptotic forms (2.5) for a viscous liquid for which to ~ 0.15. When P -  1 ~ 1 the 
following asymptotic forms hold for the coefficients of Eq.(6.3) and to 

1 2 
r = ~ / : - ~  t o =0 ,186(P-1 )  (6.5) 

, o  

We can propose the following interpolation for t o . 
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P - !  
to = 6, 5 P -  1, 2 (6.6) 

which takes into account both limiting cases P -> 1 and P - 1 <~ 1. 
Formulae (6.4) and (6.5) define the lacking parameter ~. in the expression for the flow rate. The 

constants [3 and s0 are expressed in terms of ~. using formulae (5.9), and then, using (5.1) we find the 
velocity field and the boundary of the solid kernel Zo(t). Finally, we obtain the following formulae for 
the flow rate Q and the boundary of the kernel Zo(t) 

Q=Q_(t,P), Zo=Z_(t,P), t<to(P) 

Q = Q+(t, P), Zo = z+(t, P), t > to(P) 
(6.7) 

The function Q_(t, P), is defined by (4.14), while Q+(t, P) is found from relations (5.8), (6.4) and (6.6). 
The function z_(t, P), can be obtained from relation (4.1), while z+(t, P) can be found from (5.1) using 
(5.2) and (5.9) 

1 + 2A 2 
z_(t, P) = 2A'~/t'- 2 3 +2A 2 t (6.8) 

1 ;k~t~ exp(-a~t) (6.9) z+(t, P) = 1 V 4---P- 

We will now analyse the solutions obtained. 
In the limiting case P - 1 ,~ 1 (flow close to purely plastic flow) we can use the asymptotic forms 

(6.5) and 

Q. =(P-l) 2, ct2--I/(P-l), A=~/(P-I)/2 

Q_(to)--O,221(P-l) 2, ~,=0,938(P-1) 2 

Hence, we obtain from (4.15) and (6.7)-(6.9) 

Q_ = 2 ( P -  l)t - 4/~ ~ t  ~ 

Z_ = 2 ( ~ l ) t - ~ t  

Q+ = ( P -  !)2(1 -O,938exp(-tl(P- 1))) 

z+ = ( P -  1)(1 - 0,234exp(-tl(P- 1))) 

(6.10) 

In the opposite limiting case P >> 1 (viscous flow) using the asymptotic forms 

Q** -- ~ ;  ¢t02 -- 2,467; Aexp(A2) - Pl~f~; 

Q._(t0)---0,216, ~ 0 , 6 5 7 ,  13=0,405/P, t0=0,153 

for the flow rate we obtain expressions identical with (2.7) - (2.9) for a viscous liquid, and for the 
boundary of the solid kernel we have 

Z_ =2A' f i -2 t ,  z+ =l-l/P-O,405e-2"47t/P (6.11) 

In Fig. 2 we show curves of Q(t)/Q** for three different values of A, the values of which are indicated 
(A = 0.3, P(A) = 1.19, A = 0.5, P(A) = 1.59 and A --- 1.2, P(A) = 9.17). The continuous curves are 
calculated using the asymptotic formulae (6.7), (4.15) and (5.8), and the dashed curves are calculated 
using the approximate solution (3.7) and (3.8) obtained by the Slezkin-Targ method. 

The curve of Q(t)/Q~ for A = 1.2 differs only slightly from the exact curve for a viscous liquid 
(2.7)-(2.9). The largest difference between the approximate solution (3.7) and (3.8) and the exact solution 
for a viscous liquid (P >> 1) is 13.5% and occurs when t = 0.153. The relative error decreases when the 
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parameter P decreases. Hence, the relative error in determining the flow rate using the Slezkin-Targ 
method does not exceed 13.5%. 

The dependence on P of the relaxation time tQ for the flow rate and tz for the boundary of the solid 
kernel is determined from the condition that the corresponding value differs from its limit value by 
1%. Using asymptotic relations (5.9) and (6.9) we obtain 

1 ,  100Z, ~02 257~t o 
= ~ I n - - - - ~ ,  t z = In to ot2o P -  1 

When P -  1 ~ 1 we obtain from (6.10) tQ -~ 4.54(P- 1), t z ~ 3.15(P- 1). W h e n P  -> i we obtain from 
(2.7) and (6.11) tQ ~ 1.86 and tz ~ 1.5 - 0.405 In P. 

In Fig. 2 we show curves of to(P ) and t~(P). The  function tQ(P) increases monotonically. The function 
tz(P) increases along the section 0 ~< P < 2.4, when P ~ 2.4 it reaches its greatest value t z ~ 0.93, and 
when P > 2.4 it slowly decreases. When P ~ 28 we have tz ~ to. When P > 28 the time taken for the 
boundary of the solid kernel to become established is less than to, and it must be found from (6.11) for 
the inner asymptotic form z_(t), whence 

1 I 
tz = " ~ f  = 4 1 n P  

Hence, for a large value of P the boundary of the solid kernel z0 = 1 - 1/P is established very rapidly 
and a longer process of establishing the velocity and the flow rate then occurs. 
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